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ABSTRACT. The purpose of this paper was to construct perfect samplers for length-interacting
Arak–Clifford–Surgailis polygonal Markov fields in the plane with nodes of order 2 (V-shaped
nodes). This is achieved by providing for the polygonal fields a hard core marked point process
representation with individual points carrying polygonal loops as their marks, so that the coupling
from the past and clan of ancestors routines can be adopted.
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1. Introduction

Following the ground breaking paper by Propp & Wilson (1996), which presented exact sam-
plers for a range of discrete probability distributions including the Ising model at critical
temperature, a variety of exact or perfect simulation methods has been developed for abso-
lutely continuous probability distributions. In this paper, we are particularly interested in such
methods for polygonal Markov fields observed in planar windows (Arak & Surgailis, 1989).

Our interest in developing these algorithms is motivated by the fact that the polygonal
Markov fields seem to constitute a natural and promising prior for image segmentation pur-
poses. This was first noted by Clifford & Middleton (1989), whereas the first sampler was
developed by Clifford & Nicholls (1994). Even though their original sampler was rather slow,
it has been recently re-worked and applied to real data by Paskin & Thrun (2005). A com-
pletely different algorithm based on the notion of disagreement loops (Schreiber, 2005) has
recently been developed by Kluszczyński et al. (2006) and was successfully applied to image
segmentation (Kluszczyński et al., 2005).

All the abovementioned samplers were, however, based on the classical Metropolis–
Hastings and Gibbs-sampling schemes, and the research was mainly concentrated on ela-
borating new efficient moves whereas the corresponding rates of convergence remain unknown.
In this context, it is important to develop tools allowing for perfect simulation of the polygonal
Markov fields. The present paper is the first step in this direction. It deals only with the low-
temperature regime for length-interacting fields, that is, for a sufficiently large pre-factor � for
the length element in the Hamiltonian in (2) below, yet we plan to extend the applicability of
the perfect scheme to the high-temperature and area-interacting regimes as well.

The idea underlying the perfect sampling algorithm presented in this article is to represent
the polygonal field as a marked point process, with individual points carrying polygonal loops
as their marks. The interaction in this representation turns out to be repulsive and based on
a hard core inter-contours exclusion rule.

This paper is outlined as follows. In section 2.1, we review the construction of the length-
interacting Arak process with empty boundary condition, then present a survey of marked
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point and object processes in section 2.2. In section 3, we re-formulate the length-interacting
Arak process as a hard object process, and derive the mark distribution. The perfect samplers
are discussed in the subsequent section 4. We summarize our results in section 5.

2. Polygonal Markov fields and Markov object processes

A realization of a planar polygonal Markov field in a bounded observation window consists
of a finite number of disjoint polygons. The shape and number of the polygons are random.
Such configurations also arise as realizations of object processes, the objects being polygons.
As the polygons are assumed to be disjoint, we can consider them as hard, that is non-
intersecting, objects. It is often convenient to rephrase an object process as a marked point
process, by associating with each object a typical point and considering its (shifted) shape
as the mark.

It is the purpose of this section to present a brief survey of polygonal Markov fields and
object processes. In the next section, we shall rephrase a particular polygonal Markov field,
the length-interacting Arak process with V-shaped nodes that we are primarily interested in,
as a marked point process. Typical realizations of this model are given in Figs 1 and 2.

2.1. Length-interacting polygonal Markov fields

The first example of a polygonal Markov field was provided by Arak (1982), further develop-
ments are due to Arak & Surgailis (1989), Arak & Surgailis (1991) and Arak et al. (1993).
In this paper, we restrict our attention to fields with V-shaped nodes, as in the basic Arak
model (Arak, 1982).

The Arak–Clifford–Surgailis polygonal fields enjoy a number of striking mathematical prop-
erties which make them particularly suitable not only for statistical applications but also
for theoretical analysis both from the viewpoint of stochastic geometry (Schreiber, 2005)
and statistical mechanics (Nicholls, 2001; Schreiber, 2006), where additional motivation is
due to strong analogies between polygonal Markov fields with V-shaped nodes and the two-
dimensional Ising model. An interesting feature of these polygonal fields is the two-
dimensional germ Markov property that the conditional behaviour of the field inside a
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Fig. 1. Perfect samples from the length-interacting Arak process (2) in D= [0, 10]2 by algorithm 2 for
�=2 (left) and �=3 (right).
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Fig. 2. Perfect samples from the length-interacting Arak process (2) in D= [0, 30]2 by algorithm 1 for
�=2 (left) and �=3 (right).

piecewise smooth closed curve depends on the outside configuration only through the trace
of this configuration on the boundary (intersection points and intersection directions). More-
over, the Arak, and indeed a much wider class of polygonal Markov fields, are consistent in
the sense that the model constructed in an open, bounded convex subset of another such
set coincides with the corresponding restriction of the model constructed in the superset (see
Arak & Surgailis, 1989). In fact, a lot more is known in this setting, in particular the one-
dimensional linear sections of the field turn out to coincide with the corresponding sections
for appropriate Poisson line processes, the probability distribution is known in closed form,
and a special dynamic representation is available for the process in terms of the evolution
of one-dimensional particle systems tracing the polygonal boundaries of the field in two-
dimensional space-time (see Arak & Surgailis, 1989 for details).

To proceed with a formal description of our setting, let D⊆R2 be a bounded open set
of strictly positive Lebesgue measure with piecewise smooth boundary ∂D, to remain fixed
throughout this article. Define the family �D of admissible polygonal configurations in D to
consist of all planar graphs � in D such that:

(P1) �∩∂D=∅;
(P2) all the vertices of � are of degree 2;
(P3) the edges of � do not intersect;
(P4) no two edges of � are co-linear.

In words, � consists of a finite number of disjoint polygons fully contained in D and possibly
nested – see Figs. 1 and 2 for typical realizations of a �D-valued process.

For a finite collection (l)={li}n
i =1, n∈N0, of straight lines li intersecting D, denote by �D(l)

the family of �∈�D that use (l) as their skeleton in the sense that �⊆⋃n
i =1 li and �∩ li is a

single interval of a strictly positive length for each li , i =1, . . ., n, possibly with some isolated
points added (note that these arise as intersections of edge-extending lines with other edges
of the polygonal field).

Let �D be the restriction to D of a Poisson line process � with intensity measure given
by the standard isometry-invariant Lebesgue measure � on the space of straight lines in R2.
Then, the basic polygonal Arak process AD on D is defined by

© Board of the Foundation of the Scandinavian Journal of Statistics 2007.



618 M. N. M. van Lieshout and T. Schreiber Scand J Statist 34

P
(AD∈G

)= E
∑

�∈�D(�D)∩G exp(−2`(�))

E
∑

�∈�D(�D) exp(−2`(�))
(1)

for all G⊆�D that are Borel measurable with respect to the Hausdorff distance topology,
with `(·) standing for the Euclidean length measure. Finally, for any �> 0, the length-
interacting Arak process A[�]

D in D is determined in distribution by

dL(A[�]
D )

dL(AD)
[�] := exp(−�`(�))

E exp
(−�`

(AD
)) , (2)

with L(·) standing for the law of the argument random object. The reader is referred to (Arak
& Surgailis, 1989; Arak et al., 1993) for further details. Models such as (2) whose density, up
to a proportionality constant, is expressed in exponential form are known in the language of
statistical mechanics as Gibbsian modifications of the reference distribution, in this case that
of the polygonal Arak process. The negative of the exponent is referred to as the Hamil-
tonian or energy, and scalar pre-factors (here �) as inverse temperature. Observe that the term
length-interacting, also borrowed from the language of statistical mechanics, admits a natural
interpretation stemming from the fact that large � in (2) tends to favour low-energy configu-
rations leaving little room for entropic fluctuations whereas small � makes the energy factor
dominated by the entropic one, in analogy with physical thermodynamic systems.

Note that in the literature on consistent polygonal fields one usually considers free rather
than empty boundary conditions as imposed in this paper, that is to say, usually the poly-
gonal contours are allowed to be chopped off by the boundary ∂D whereas here we forbid
them to touch the boundary [cf. condition (P1)]. We chose to work in this setting as the
empty boundary object is better suited for our further purposes. It should be emphasized
that the properties mentioned in the beginning of this section for AD do not hold for general
length-interacting or other Gibbsian modifications of the Arak–Clifford–Surgailis fields.

2.2. Marked point processes

Let M be a complete separable metric space and take D as above. A planar marked point
process MD with positions in D and marks in M is a point process on D×M such that the
process of unmarked points is finite (Daley & Vere-Jones, 1988). In other words, realizations
of Y are of the form (y)={y1 = (x1, m1), . . ., yn = (xn, mn)}, where n∈N0, xi ∈D and mi ∈M
for all i =1, . . . , n, with xi /=xj for i /= j.

Let �M be a probability measure on the Borel �-algebra B(M). We shall restrict attention
to marked point processes that are absolutely continuous with respect to the distribution of
a unit rate Poisson process PD on D marked independently and identically according to �M .

The Papangelou conditional intensity of a marked point process M at (x, m)∈ (D×M)\(y)
is defined as

�((x, m);{(xi , mi)}n
i =1) := (dL(M)/dL(PD))[{(xi , mi)}n

i =1∪{(x, m)}]
(dL(M)/dL(PD)) [{(xi , mi)}n

i =1]
(3)

whenever (dL(M)/dL(PD))[{(xi , mi)}n
i =1] > 0, and arbitrarily (say 0) otherwise. In other words,

(3) may be interpreted heuristically as the conditional probability of finding a point at dx with
mark d�M (m) conditional on the configuration elsewhere being {(xi , mi)}n

i =1.
Henceforth, we shall assume the following properties to hold:

(M1) dL(M)/dL(PD) is hereditary, that is, if marked point pattern (y) is assigned a strictly
positive value, so are its subsets;

(M2) local stability, that is, the Papangelou conditional intensity is bounded from above by
some finite constant �> 0.

© Board of the Foundation of the Scandinavian Journal of Statistics 2007.
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The mark m of a point at x may be a parametrization of a geometric, planar object Z(m)
translated to the location x. Such an object is said to be hard if it cannot overlap other
objects. In that case,

�((x, m);{(xi , mi)}n
i =1)=0

whenever

[x +Z(m)]∩ [∪n
i =1xi +Z(mi)] /=∅.

The generic example is to take a constant conditional intensity whenever there is no overlap,
which corresponds to the conditional law

L(M)=L(PD | ∀(x, m), (x′, m′)∈PD : x /=x′ ⇒x +Z(m)∩x′+Z(m′)=∅) (4)

of a Poisson process given there is no overlap between the objects in it. Clearly, the map
m→Z(m) has to be such that the conditioning event is measurable. Note that M is Markov
(Ripley & Kelly, 1977) with respect to the overlapping object relation, in the Ripley–Kelly
sense that (3) depends only on those (xi , mi) for which x +Z(m)∩xi +Z(mi) /=∅. This ‘local’
property implies a spatial Markov property: for any Borel subset A of D×M , the conditional
distribution of M restricted to A given the configuration on the complement of A depends
only on M restricted to the subset of marked points not in A whose associated object over-
laps one represented by some marked point in A (Ripley & Kelly, 1977; Van Lieshout, 2000).
Note that these notions of Markovianity do not coincide with the germ-Markovianity dis-
cussed in section 2.1 above, yet the polygonal Markov fields do enjoy the Markov property
in all these senses.

A marked point process is said to be repulsive if �(·; ·) is decreasing in its second argu-
ment with respect to set inclusion, attractive if it is increasing. Indeed, in case of repulsion,
the more marked points there are, the harder it is to introduce yet another one, and the
smaller the conditional intensity. We shall see in the next section that the length-interacting
Arak process is repulsive, which is good news for the design of efficient perfect simulation
algorithms.

3. Marked point process representation for polygonal Markov fields

In this section, we follow the route outlined in the beginning of section 2 and show that the
length-interacting Arak process is a Markov hard object process. To do so we recall that, as
argued in section 2.2 in (Schreiber, 2005), the polygonal field A[�]

D admits a so-called polymer
representation on the space of closed contours in D. Then, we shall represent the object by
its leftmost point and a shifted contour, so as to obtain the desired marked point process
representation (4).

Let CD be the set of all closed polygonal contours in D which do not touch the boundary
∂D. For a given finite configuration (l)={l1, . . ., ln} of straight lines intersecting D denote by
CD(l) the family of those polygonal contours in CD which belong to �D(l). Equip the space
CD with the Hausdorff metric. It is well known that the Hausdorff metric space on the family
of compact subsets of D∪∂D is itself compact and hence complete and separable (see e.g.
proposition 1-4-4 in Matheron, 1975). The subspace CD is also a metric space and inherits
separability. It is easily seen not to be complete, yet it is a subspace of the compact space
of compact subsets of D∪∂D considered above and hence any point process on CD is well
defined (cf. Daley & Vere-Jones, 1988).

Our next step is to show that the distribution of A[�]
D is of a similar form to (4), but

with P replaced by a Poisson process on CD with a suitably chosen intensity measure. To do
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so, define the so-called free contour measure �D on CD by setting for C⊆CD measurable with
respect to the Borel �-field generated by the Hausdorff distance topology,

�D(C)=
∫

Fin(L[D])

∑
�∈C∩CD(l)

exp(−2`(�)) d�∗((l)) (5)

with Fin(L[D]) standing for the family of finite line configurations intersecting D and where
�∗ is the measure on Fin(L[D]) given by

d�∗(l1, . . ., ln) :=
n∏

i =1

d�(li)

with � defined in the discussion preceding (1). For �∈R, define the exponential modification
�[�]

D of the free contour measure �D by

d�[�]
D

d�D
[�] := exp(−�`(�)) (6)

and let P
�[�]

D
be the Poisson process on CD with intensity measure �[�]

D . Then, by (5) and (1),
the polygonal field A[�]

D coincides in distribution with the union of contours in P
�[�]

D
con-

ditioned on the event that they are disjoint, i.e.

L
(
A[�]

D

)
=L

(
P

�[�]
D

∣∣∣ ∀�, �′ ∈P
�[�]

D
:� /=�′ ⇒�∩�′=∅

)
(7)

(see section 2.2 in Schreiber, 2005). Note that the conditioning in (7) makes sense because
�[�]

D (CD) is finite as shown in section 2.2 in Schreiber (2005). Furthermore, for all bounded
open sets D with piecewise smooth boundary, the free contour measures �D as defined in (5)
arise as the respective restrictions to CD of the same measure � on C :=⋃∞

n=1 C(−n, n)2 , in the
sequel referred to as the infinite volume free contour measure. In the same way, we construct
the infinite volume Gibbs-modified measures �[�].

To place the polymer representation in the marked point process setting of section 2.2,
identify a given contour collection {�1, . . ., �k} arising as a realization of A[�]

D , with the col-
lection of points xi := 	[�i ], i =1, . . ., k, carrying the respective contours as their marks, where
	[·] is a mapping from CD to D. Even though a number of different natural candidates for 	[·]
could be considered, to be specific in the sequel we shall always take 	[�] to be the extreme
left point of the contour �, minimizing the first coordinate, with possible ties broken in an
arbitrary measurable way. For formal convenience we regard the marks �i attached to the
points xi ∈D as elements of the common space C0 :={�∈C | 	[�]=0} shifted to correspond-
ing xi . Below, for a point x∈D carrying a mark �∈C0, we shall reserve the name of shifted
mark for the translate of the contour � by the vector x. It is also convenient for our further
purposes to admit in C0 the empty contour ∅. In this way, the object process on CD described
above is re-formulated as a marked point process on D with marks in C0.

It remains to endow the mark space M =C0 with a probability measure �M so that by con-
ditioning a homogeneous Poisson process on D randomly marked with independent
�M -distributed contours on the event of no intersection between the shifted marks, the length-
interacting Arak process is obtained. For �≥2, this can be carried out by the random walk
representation of Schreiber (2006) as follows. Let �[�]

* be determined by the following
construction of a C0-valued �[�]

* -distributed random element �:

1. Simulate a continuous-time random walk Zt governed by the following dynamics:

(i) set Z0 :=0 and choose the initial direction uniformly in (0, 2
);
(ii) between direction update events specified below move in a constant direction with

speed 1;

© Board of the Foundation of the Scandinavian Journal of Statistics 2007.
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(iii) with intensity 4 update the movement direction, choosing the angle �∈ (0, 2
) between
the old and new directions according to the density | sin(�) | /4.

2. Consider a killed modification Z̃ [�−2]
t of Zt by killing Zt

(i) with constant rate �−2;
(ii) whenever it hits its past trajectory.

3. Draw an infinite loop-closing half-line l∗ beginning at 0 and forming with the initial seg-
ment of (Zt)t≥0 an angle �∗ ∈ (0, 2
) distributed according to the density | sin �∗ | /4.

4. If the random walk Z̃ [�−2]
t hits the loop-closing half-line l∗ before being killed, and the

self-avoiding contour �* :=�*[Z̃ [�−2]; l∗] created by l∗ and the trajectory of Z̃ [�−2]
t up to the

moment of hitting l∗ satisfies 	[�*]=0, then

(i) with probability exp(−[�+2]`(e∗)) output � :=�*, where e∗ stands for the segment of
the loop-closing half-line l∗ from 0 to its intersection point with Z̃ [�−2]

t ;
(ii) otherwise output � :=∅.

In all remaining cases set � :=∅.
The algorithmic definition has the advantage of being easy to implement. The following

lemma, close in spirit to lemma 5.1 in Schreiber (2006), is the main result of this section, and
states the validity of the random walk construction.

Lemma 1
For �≥2 the polygonal Markov field A[�]

D coincides in law with the union of contours carried as
shifted marks by the C0-marked point process Y [�] in D, determined by Papangelou conditional
intensity

�
(
(x, �);{(xi , �i)}k

i =1

)
:=

{
4
, if x +�∩ [

⋃k
i =1 xi +�i ]=∅, x +�⊆D,

0, otherwise.
(8)

with respect to the product of Lebesgue measure on D and �[�]
* on C0.

Proof. The directed nature of the random walk trajectories as constructed above re-
quires considering for each contour � two oriented instances �→ (clockwise) and �← (anti-
clockwise). In view of the polymer representation (7) and taking into account that �[�]

D arises
as the restriction of �[�] to CD, by the construction of �[�]

* the assertion of the lemma
will follow as soon as we show that for each x∈R2 and �∈C we have

8
dx e−[�+2]`(e∗)P
(

Z̃ [�−2]
t reaches l∗ and x +�*[Z̃ [�−2]; l∗]∈d�→

)
=�[�](d�), (9)

where e∗ stands for the last segment of �→ counting from x as the initial vertex, which is to
coincide with the x-shifted segment of the loop-closing line l∗ joining its intersection point
with Z̃ [�−2]

t to 0; whereas �*[Z̃ [�−2]; l∗] is the self-avoiding contour created by l∗ and the tra-
jectory of Z̃ [�−2]

t up to the moment of hitting l∗, as denoted in the construction of �[�]
* above.

Indeed, the same relation holds then for �←, whence adding versions of (9) for �→ and �←,
which amounts to taking into account two possible directions in which the random walk
can move along �, will yield 2�[�](d�) on the right-hand side (RHS), whence (8) will follow.
Observe that �*[Z̃ [�−2]; l∗] is shifted by x in (9) above – this is because the measure �[�](·) is
defined on the space of bounded polygonal contours C and this is where � in the RHS of
(9) belongs to whereas the measure �[�]

* (·), determined by the law of �*[Z̃ [�−2]; l∗] as showing
up in the left-hand side of (9), is defined on the space C0 consisting of contours �∈C with
	[�]=0.

© Board of the Foundation of the Scandinavian Journal of Statistics 2007.
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To establish (9), we observe that the probability element

P
(

Z̃ [�−2]
t reaches l∗ and x +�*[Z̃ [�−2]; l∗]∈d�→

)

is exactly

1
4[�×�]({(l, l∗) | l ∩ l∗ ∈dx}) exp(−[(�−2)+4]`(�\e∗))

k∏
i =1

d�(l[ek ]), (10)

where e1, . . ., ek are all segments of � including e∗, while l[ei ] stands for the straight line deter-
mined by ei . Indeed,

1. The pre-factor [4[�×�]({(l, l∗) | l∩ l∗ ∈dx})]−1 comes from the choice of the lines contain-
ing, respectively, the initial segment of �→ (counting from x) and l∗ as well as from the
choice between two equiprobable directions on each of these lines.

2. For the remaining segments we use the fact that, for any given straight line l0, �({l | l∩ l0∈
d`, � (l, l0)∈d�})= | sin � |d` d� with d` standing for the length element on l0 and with
� (l0, l) denoting the angle between l and l0 (see proposition 3.1, as well as the argument
justifying the dynamic representation of the Arak process in section 4 of Arak & Sur-
gailis, 1989 and the proof of lemma 1 in Schreiber, 2005). Note that the direction
update intensity was set to 4 to coincide with

∫ 2

0 | sin � |d�=4.

3. The additional prefactor exp(−[(�−2)+4]`(�\e∗)) shows up in (10) because:

(i) the polygonal path �\e∗ arises as the x-shifted trajectory of the random walk Z̃ [�−2]

whose survival probability along �\e∗ is precisely exp(−[(�−2)+4]`(�\e∗));
(ii) the segment e∗ of the x-shifted loop-closing line l∗ is not generated by Z̃ [�−2] and hence

is not subject to killing.

Recalling that

�(d�)= exp(−2`(�))
k∏

i =1

d�(l[ek ])

[see (5)] and observing that [�×�]({(l, l∗) | l∩ l∗ ∈dx})=2
dx as follows by standard integral
geometry (cf. proposition 3.1 in Arak & Surgailis, 1989), we see that the expression in (10)
coincides with (1/8
 dx) exp([�+2]`(e∗)) exp(−�`(�))�(d�), which yields the required relation
(9) upon recalling the definition of �[�] [see (6)]. The proof is complete.

4. Perfect simulation using spatial birth-and-death processes

In this section, we consider two exact sampling methods based on the classic idea to simu-
late from planar point process models by means of running a spatial birth-and-death process.
Coupling from the past techniques (CFTP) for point processes were introduced by Kendall
(1998) for a special model. The generalization to locally stable point processes can be found
in Kendall & Møller (2000), and to marked patterns in Van Lieshout & Stoica (2006). In the
context of spatial interpolation and cluster modelling, Van Lieshout & Baddeley (2002) pre-
sent an adaptive CFTP algorithm, whereas Lund & Thönnes (2004) use auxiliary marks in
a similar framework.

Algorithm 1 (CFTP).

1. Initialize T=1, and let Y(0) be a realization of a Poisson process of rate 4
 in D, marked
independently and indentically distributed (i.i.d) according to �M =�[�]

* .

© Board of the Foundation of the Scandinavian Journal of Statistics 2007.
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2. Extend Y(·) backwards to time −T by means of a spatial birth-and-death process with
birth rate 4
dx�[�]

* (d�) and unit death rate.
3. Generate L−T (·) (lower process) and U−T (·) (upper process) forwards in time as follows:

(i) set L−T (−T )=∅ and U−T (−T )=Y(−T );
(ii) if Y(·) experiences a backward birth at time t, i.e. Y(t−)=Y(t)∪{(x, �)} for some

(x, �) �∈Y(t), where Y(t−) denotes the state just prior to t, delete (x, �) from L−T (t−)
and U−T (t−);

(iii) if Y(·) experiences a backward death at time t, i.e. Y(t−)=Y(t)\{(x, �)} for some
(x, �)∈Y(t), the marked point (x, �) is added to L−T (t−) iff

[x +�]∩
⋃

(xi , �i )∈U−T (t−)

[xi +�i ]=∅, [x +�]⊆D

and to U−T (t−) iff

[x +�]∩
⋃

(xi , �i )∈L−T (t−)

[xi +�i ]=∅, [x +�]⊆D.

4. If U−T (0)=L−T (0) stop. Else set T =2T and go to 2.
5. Return U−T (0).

The clan of ancestors algorithm of Fernández et al. (2002) is similar in flavour. It has the
advantage of avoiding the birth of marked points that will have no influence on the final out-
come, but does not exploit the repulsive behaviour of the hard core contour process. It tends
to be better than coupling from the past for low intensities, worse for higher ones (cf. Van
Lieshout & Stoica, 2006).

Algorithm 2 (clan of ancestors).

1. Let Y(0) be a realization of a Poisson process of rate 4
 in D, marked i.i.d. according to
�M =�[�]

* . Initialize the clan of ancestors as A=Y(0).
2. Extend Y(·) backwards by means of a spatial birth-and-death process with birth rate

4
dx�[�]
* (d�) and unit death rate. At each death incident Y(t−)=Y(t)\{(x, �)} for some

t < 0 and (x, �)∈A∩Y(t), add the marked points (x′, �′)∈Y(t−) for which x′+�′ ∩x +
� /=∅ to A. The backwards sweep ends when At =A∩Y(t)=∅. The stopping time thus
obtained is denoted by −T.

3. Generate Z(·) forwards in time as follows:

(i) set Z(−T )=∅;
(ii) if Y(·) experiences a backward birth at time t, i.e. Y(t−)=Y(t)∪{(x, �)} for some

(x, �) �∈Y(t), delete (x, �) from Z(t−);
(iii) if Y(·) experiences a backward death at time t, i.e. Y(t−)=Y(t)\{(x, �)} for some

(x, �)∈At, the marked point (x, �) is added to Z(t−) iff

[x +�]∩
⋃

(xi , �i )∈Z(t−)

[xi +�i ]=∅, [x +�]⊆D;

if (x, �) �∈At then Z(t)=Z(t−) remains unchanged.

4. Return Z(0).

Some realizations obtained by algorithms 1 and 2 implemented in C++ using the library
MPPLIB (Steenbeek et al., 2002–2003) are presented in Figs 1 and 2. The execution time
is in the order of seconds for Fig. 1, minutes for those in Fig. 2 on a 2.1 GHz desktop
computer.

© Board of the Foundation of the Scandinavian Journal of Statistics 2007.



624 M. N. M. van Lieshout and T. Schreiber Scand J Statist 34

Both algorithms 1 and 2 can be placed in the general framework discussed in
(Van Lieshout & Stoica, 2006) as soon as we are able to verify the conditions (M1) and
(M2) for the Papangelou conditional intensity �(·; ·) as given in (8), as well as the repulsivi-
ty of �(·; ·) needed for the validity of algorithm 1. All these required relations are, however,
self-evident, which leads us to the following lemma which concludes the current section.

Lemma 2
The polygonal Markov field A[�]

D coincides in distribution with both U−T (0)=L−T (0) as con-
structed in algorithm 1 and with the output Z(0) of algorithm 2.

5. Conclusion

In this paper, we designed perfect simulation algorithms for length-interacting Arak poly-
gonal Markov fields observed in bounded planar windows. To do so, we re-formulated the
model as a marked point process of hard objects, derived the mark distribution, and special-
ized the coupling from the past and clan of ancestors algorithms developed for (marked)
point processes to our particular model. The clan of ancestors method is the fastest for
low intensities; coupling from the past applies to a wider range of parameter values (� and
window size). We aim at constructing high-temperature perfect samplers as well, which is the
subject of our current work in progress.

An alternative to spatial birth-and-death-based simulation is to use the Metropolis–
Hastings framework (Clifford & Nicholls, 1994). In contrast to a spatial birth-and-death sam-
pler which accepts all proposed transitions, a Metropolis–Hastings algorithm accepts a new
state with a probability that depends on the likelihood ratio of the new state compared with
the current one. Note that transitions do not need to be limited to births and deaths; for
example, one might wish to alter the angle between two edges or the position of a vertex.
Although such flexibility may be very desirable in practice to improve the mixing time, it also
implies that it may be harder to design a perfect version than for the dynamics discusssed in
section 4. Even in the simplest case with birth-and-death proposals only, one has to discret-
ize D in order to ensure that deaths are accepted with probability 1, and be careful which
marked point to delete, so as to maintain the set inclusion order between the upper and
lower processes U and L (cf. algorithm 1); furthermore, simulation studies by Van Lieshout
& Stoica (2006) suggest the increased complexity is not repaid by increased efficiency, so we
do not pursue the topic here. For further details on perfect Metropolis–Hastings sampling,
see Kendall & Møller (2000) or Van Lieshout & Stoica (2006).
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